Repository | Book | Chapter

191486

(2007) Challenges for computational intelligence, Dordrecht, Springer.

Noisy chaotic neural networks for combinatorial optimization

Lipo Wang , Haixiang Shi

pp. 467-487

In this Chapter, we review the virtues and limitations of the Hopfield neural network for tackling NP-hard combinatorial optimization problems (COPs). Then we discuss two new neural network models based on the noisy chaotic neural network, and applied the two methods to solving two different NP-hard COPs in communication networks. The simulation results show that our methods are superior to previous methods in solution quality. We also point out several future challenges and possible directions in this domain.

Publication details

DOI: 10.1007/978-3-540-71984-7_17

Full citation:

Wang, L. , Shi, H. (2007)., Noisy chaotic neural networks for combinatorial optimization, in W. Duch & J. Mańdziuk (eds.), Challenges for computational intelligence, Dordrecht, Springer, pp. 467-487.

This document is unfortunately not available for download at the moment.